If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n^2=40
We move all terms to the left:
5n^2-(40)=0
a = 5; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·5·(-40)
Δ = 800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{800}=\sqrt{400*2}=\sqrt{400}*\sqrt{2}=20\sqrt{2}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{2}}{2*5}=\frac{0-20\sqrt{2}}{10} =-\frac{20\sqrt{2}}{10} =-2\sqrt{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{2}}{2*5}=\frac{0+20\sqrt{2}}{10} =\frac{20\sqrt{2}}{10} =2\sqrt{2} $
| 4r+6+52=90 | | -1+5x=5x+9 | | 4r+15=27 | | 3y+54=114 | | 8x-30+40=30x-10x-20 | | 64=-2^p | | 8-2m=6 | | -r+10=14 | | 2a-1/3-a-2/4=1 | | 23y-16=8y+14 | | 2y-4/6+3y+4/5=2 | | 5x+21=9x+1=180 | | 3(t+9)=81 | | 5x+21=9x-1 | | f(5.10)=55 | | 3(2y+18)=-10 | | 24=4a^2 | | (x-17)/4=3 | | 1=5-p | | (x-15)/7=42 | | 7x-5+5x=15x-7-3x+ | | 116+x=132 | | x+19=67 | | x/4.2+3.6=5.4 | | 23+90+4x+19=180 | | 90+48+3x-15=180 | | 30+90+6x+18=180 | | 28+102+7x+8=180 | | 28+102+7x8=180 | | 80+38+5x+12=180 | | 2x+1+4x-3=10 | | s+2s+2s=81 |